MAC-CPTM Situations Project
Situation 01: Sine 32°
Patricia Wilson, Heather Johnson, Jeanne Shimizu, Evan McClintock, 
Rose Mary Zbiek, M. Kathleen Heid, Maureen Grady, Svetlana Konnova
Prompt
After completing a discussion on special right triangles (30°-60°-90° and 45°-45°-90°), the teacher showed students how to calculate the sine of various angles using the calculator.  
A student then asked, “How could I calculate sin (32°) if I do not have a calculator?”
Commentary



The set of foci provide interpretations of sine as a ratio and sine as a function, using graphical and geometric representations. The first four foci highlight  as a ratio, appealing to the law of sines, right-triangle trigonometry, and unit-circle trigonometry. The second three foci highlight as a function and use tangent and secant lines as well as polynomials to approximate.	Comment by wseaman: The mathematical content of each of the foci are correct and contain good and important mathematical ideas ranging from geometric defns and drawings to linear approximations with secants, tangents and higher order derivatives and calculus techniques. It therefore would expose teachers to many mathematical ideas that become highly important in students’ later studies.
 In all the examples references to technology such as GSP is given, and I assume technology is implicitly used in computing some of the numerical approximations for numbers like Pi/6, Pi/4, 8Pi/45. 
The initial foci indicate that one could use a protractor for angle approximation (and perhaps a ruler) and measure the side lengths for the computation. I think in the questions where technology is invoked explicitly, the question that arose in my mind was, “If you’re going to use technology to ask GSP to do a drawing and then ask GSP to do a measurement, why don’t you just ask GSP what sin(32) is to start with?”
Walter is suggesting that there is calculator capacity within GSP, so why wouldn’t someone use it? We chose not to incorporate this comment, because the prompt was asking how to calculate sin(32) without a calculator. 
This question is not meant to be flippant, but is getting at an important mathematical issue I believe. If you are willing to believe GSP or another technology’s answers for some parts of the problem, why not believe the technology’s answer to the whole problem you are working
on if it will give you one?

Finally although this is not a crucial issue for the problem at hand, the question of “how good” an approximation you are getting might be referred to just as a matter of completeness. These are hard questions and depend on the size of the interval, the order of highest derivative you are using and the function(s) in question. Just a reference like  this would be good to my mind:
We’ve inserted (and edited) his wording as it appears below:
“The question of “how good” an approximation you are getting using secants, tangents or Taylor polynomials willdepend on the size of the x-interval, the order of highest derivative and the function(s) in question. These challenging problems are usually taken up in courses on mathematical analysis and numerical analysis.
“

The question of “how good” an approximation one gets using secants, tangents, or Taylor polynomials depends on the size of the x-interval, the order of the highest derivative, and the function(s) in question. These challenging problems are usually taken up in courses on mathematical analysis and numerical analysis.

Mathematical Foci
Mathematical Focus 1
Ratios of lengths of sides of right triangles can be used to compute and approximate trigonometric function values.
A ratio of measures of legs of a right triangle with an acute angle of measure x° can be used to approximate sin(x). Sin(x) can be approximated by sketching a 32°-58°-90° right triangle with a protractor or with dynamic geometry software, measuring the length of the hypotenuse and leg opposite the 32° angle, and computing the sine ratio (see Figure 1).
[image: ]
Figure 1. Right triangle ABD with a 32 angle.


Hence,.

Mathematical Focus 2


Coordinates of points on the unit circle represent ordered pairs of the form (,) that can be used to approximate trigonometric values.








The unit circle is the locus of all points one unit from the origin. The equation for a circle with radius 1 centered at the origin is. Consider the angle  in standard position formed by the x-axis and a ray from the origin through a point A on the unit circle.  Then, and. Hence, the coordinates of A are, and another equation for a circle with radius 1 centered at the origin is.
Let A be positioned on the unit circle so that [image: ]ABD has degree-measure 32 (see Figure 2).  Then, the signed length of segment AD is equal to sin (32). 

The signed length of segment AD is approximately 0.53 and so, 
[image: ]
Figure 2. Right triangle ABD with a 32 angle on a unit circle. 



Mathematical Focus 3

The law of sines can be used to compute and approximate the sine function value through the measurement of geometric constructions.
The law of sines applies to any triangle in a plane. Consider triangle ABC, with sidelengths a, b, and c for [image: ], [image: ], and [image: ], respectively. The law of sines states: 


.







Sin() can be approximated by sketching any triangle the degree-measure of one of whose angles is  and the degree-measure of another of whose angles has a known sine value (e.g., , , , or ).





[bookmark: _GoBack]For example, a triangle can be sketched (with software such as Geometer’s Sketchpad) with m[image: ]A =  and m[image: ]B =  (see Figure 3). Using the measure a and the measure b (the length of the side opposite theangle), sin() can be calculated using the law of sines. 	Comment by Younhee: JL editing

Using the measure a, and the measure of b, the



Because sin(90) = 1,  then  
[image: ]
Figure 3. Using the law of sines and sin(90) to calculate sin(32).  

Hence, 





In another example, a triangle can be sketched (with software such as Geometer’s Sketchpad) with m[image: ]A =  and m[image: ]B =  (see Figure 4). Using the measure a and the measure b (the length of the side opposite the angle), sin  can be calculated using the law of sines.

By the law of sines,  


Because  , then .
[image: ]
Figure 4. Using the law of sines and sin(30) to calculate sin(32).  
 

Hence, 
Mathematical Focus 4

A continuous function, such as, can be represented locally by a linear function and that linear function can be used to approximate local values of the original function.

The function  is not a linear function; however, linear functions can be used to approximate nonlinear functions over sufficiently small intervals.
Measuring angles in radians:


is equivalent to  radians, Therefore:


is equivalent to  , or 0.5236 radians


is equivalent to  , or 0.5585 radians


is equivalent to  , or 0.7854 radians








Figure 5 shows the graph of the function  and the graph of the secant line, where the coordinates of A are  and the coordinates of B are. Because the function  is approximately linear between points A and B, the values of the points on the secant line, , provide reasonable approximations for the values of  between points A and B (see Figure 5). Because sin(x) is concave down in the interval for x of , the estimate for sin(32) will be an underestimate.

[image: ]
Figure 5. Using a secant line to estimate sin(32).





In Figure 6, point D on secant line  with coordinates  provides a reasonable approximation for the location of point C on  with coordinates.
[image: ]
Figure 6. Zooming in on the estimate of sin(32) using a secant line. 

Therefore,.





An approximation for  can also be found by using the equation for secant line. Since secant line  passes through the points  [image: ] (0.5236, 0.5) and[image: ](0.7854 0.7071) , its equation can be approximated as follows:


When x = 0.5585, y = 0.5276.

Therefore, sin() = 0.5276.
Mathematical Focus 5
Given a differentiable function and a line tangent to the function at a point, values of the tangent line will approximate values of the function near the point of tangency.










Because the function  is differentiable, given a point  on, the line tangent to  at  can be used to approximate  at a nearby point with x-coordinate a + dx.   When is small, the value of the tangent line at the point with x-coordinate a + dx will be very close to the value of . Using radian measure, is equivalent to  , or 0.5585 radians.






Consider a geometric interpretation of differentials  and  and their relation to  and , where a tangent line is used to approximate  near a given value (see Figure 7).


[image: ]
Figure 7. A geometric interpretation of differentials to estimate sin(32).
[bookmark: OLE_LINK33][bookmark: OLE_LINK34]


Since  and,
Then, 

.
 
Mathematical Focus 6
The theory of Taylor series provides the definition of the sine function based on the foundations of the real number system, independent of any geometric considerations.
The sine function could be defined using an infinite series. The following identity holds for all real numbers x, with angles measured in radians:



The sine function is closely approximated by its Taylor polynomial of degree 7 for a full cycle centered on the origin,  (see Figure 8).

[image: ]                                 Figure 8. Taylor polynomial approximating the sine function.

Postcommentary
Although they differ in the use of ratios versus the use of lines as approximation tools, all four methods involve approximations.  The ratio methods depend on a definition of the trigonometric functions and therefore are not generalizable to other types of functions, whereas the line methods depend on characteristics of continuous functions and therefore can be used for a wider range of functions. 
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